The reaction was stirred for 2 h at room temperature, and then excess PCl_6 was destroyed by stirring with acetic anhydride (14.7 mL, 0.156 mol) for 15 min. The solution was concentrated to dryness at 50 $\rm{^oC}$ by using aspirator pressure at first and then higher vacuum. To remove residual acetic anhydride, the cubane-1,4-bis(carbonyl chloride) was dissolved in dry, ethanol-free CHCl₃, followed by concentrating to dryness at 50 $\rm{^{\circ}C}$ at reduced pressure. This step was repeated two or three times, until no anhydride was present. Finally, the pale yellow crystals were dried under high vacuum for \sim 2 h at 50 °C. The cubane-1.4-bis(acid chloride) was dissolved in 500 mL of dry CHCl₃ and transferred to a 1-L flask with mechanical stirrer, argon purge, 50-mL addition funnel, and cold water bath $(5-10 \degree C)$. Triethylamine $(31.6 g,$ 0.312 mol) was added slowly over 5 min and then N-tert-butyl-N-ethylamine (31.6 g, 0.312 mol) was added dropwise over 20 min while the cold water bath was maintained. After the addition, the reaction mixture was stirred for 2 h at room temperature and washed with 5% HCl(3 **X** 100 mL), 5% KOH (2 **X** 100 mL), and saturated NaCl $(1 \times 100 \text{ mL})$. The yellow CHCl₃ layer was treated with activated carbon, dried (MgSO₄), and filtered over Celite to give a less colored solution, which when concentrated to dryness left a pale yellow solid. This solid was slurried in 400 mL of dry ethyl acetate at 40–50 °C, cooled in ice, filtered, washed with cold ethyl acetate, and dried under high vacuum to yield 41.0 g (73%) of the title compound as pure white crystals: mp 185-188 "C; 1.4 (s, 9 H, tert-butyl), 3.8 (q, 2 H, $J = 7$ Hz, CH₂), 4.55 (s, 6 H); IR (KBr) 2970,1610,1390,1205 cm-'. ¹H NMR ⁽¹H, CDCl₃, TMS standard) δ 1.3 (t, 3 H, $J = 7$ Hz, CH₃),

NJV'-Di-tert-butyl-NJV'-diet hyl-2,7-dicarbamoylcubane-1,4-dicarboxylic Acid (2). **2,2,6,6-Tetramethylpiperidine** (107 g, 0.760 mol, 10 equiv) and **tetramethylethylenediamine** (12.6 mL, 1.1 equiv) were added to 600 mL of dry THF (distilled over CaH) in a 2-L flask equipped with **an** argon purge. The reaction mixture was cooled in dry ice/acetone, and 2.5 M n-butyllithium in hexane (304 mL, 0.760 mol, 10 equiv) was added dropwise with stirring over 2 h at -78 °C, and then the reaction was stirred at 0 °C for 1 h. The reaction mixture was cooled in a dry ice/acetone bath. MgBr2 etherate (98.1 g, 0.380 mol, 5 equiv) and 1 (27.2 g, 0.076 mol, 1 equiv) were added all at once, and the mixture was then placed in the bath and stirred for 8 h. The reaction mixture was cooled in dry ice/acetone, and $CO₂$ was bubbled through the stirring reaction for 12 h at dry ice/acetone temperature to yield a light tan suspension, which was concentrated to dryness on the rotovap, first using aspirator pressure and then higher vacuum for about 2 h. The light tan solid was vigorously stirred with 1500 mL of $H₂O$ for 1 h, and the resulting suspension was transferred to a 2-L flask and then cooled to 0° C. Ice-cold 19% HCl was added slowly with stirring to bring the pH to 1 (about 250 mL; there was some foaming). The suspension was filtered to give a light brown paste, which was dissolved in 600 mL of boiling $CH₂Cl₂$, cooled in the freezer overnight, filtered, and washed with cold $CH₂Cl₂$ to give 20.0 g of diacid 2 as colorless plates which decompose exothermically without melting at 239.3 °C. The mother liquor was concentrated to one-third volume and cooled to give a second crop of 5.5 g for a total yield of 25.5 g (75%): $J = 6$ Hz, 4 H), 4.6 (s, 4 H), failed to observe carboxylic acid proton. Anal. Calcd C, 64.56; H, 7.67; N, 6.27. Found: C, 64.54; H, 7.55; N, 6.27. ¹H NMR (CD₃OD) δ 1.25 (t, \bar{J} = 6 Hz, 6 H), 1.5 (s, 9 H), 3.75 (q,

Cubane-l,2,4,7-tetracarboxylic Acid (3). Compound **2** (5.82 g, 0.013 mol) was added to 125 mL of 70% $HNO₃$. The mixture was heated and at 58 "C the reaction instantly turned dark red, evolving $NO₂$, and the temperature went rapidly to 75 °C. Mild reflux was continued for 4 h, at which time the reaction was pale yellow. The reaction was cooled in the freezer overnight, filtered, washed with cold 70% HNO₃ and then, after changing the filter flask, with 100% ethanol, and dried to give 3.44 g of the product (95%) as a pure white powder which decomposes quite exothermically at 267 "C. Dilute HCl at reflux can be substituted for nitric acid; however, the isolation of the product is more difficult. Identification was based on comparison with the known material? 'H NMR (CD30D) 6 4.3 *(8).* Anal. Calcd: C, 51.44; H, 2.88. Found: C, 51.21; H, 2.88.

Acknowledgment. This research was supported by Contract No. **N00014-86-C-0699** from the Office of Naval Research. We thank Dr. Philip Eaton for many stimulating discussions.

A New Method for the Synthesis of Acylsilanes via One-Carbon Homologation of Aldehydes

Jun-ichi Yoshida,* Shin-ichiro Matsunaga, Yuji Ishichi, Tsuyoshi Maekawa, and Sachihiko Isoe*.

Institute **of** Organic Chemistry, Faculty *of* Science, Osaka City University, Sugimoto *3-3-138,* Sumiyoshi, Osaka *558,* Japan

Received June 11,1990

Recently acylsilanes have received increasing research interest from the physical organic¹ and synthetic organic² view points. For example, highly diastereoselective addition of nucleophiles³ and stereoselective Wittig reactions⁴ utilizing the bulky silyl groups demonstrate the synthetic utility **of** acylsilanes. Recently we have developed an electrochemical oxidation of acylsilanes in which the carbon-silicon bond is cleaved and oxygen and nitrogen nu-
cleophiles are introduced at the carbonyl carbon.⁵ Easy migration of the silyl group from carbon to oxygen immediately after a nucleophile attacks the carbonyl carbon is also an important property of acylsilanes.6

Although several methods for the synthesis of acylsilanes have been reported,⁷ recent developments in the synthetic applications **of** acylsilanes increase the demand for new versatile methods. In this paper we present a new method for the synthesis of acylsilanes from aldehydes by onecarbon homologation. This reaction provides general and convenient access to saturated, α , β -unsaturated, and $(\alpha$ haloacy1)silanes.

Methoxybis(trimethylsily1)methane was deprotonated with n-butyllithium in tetrahydrofuran (THF), and the resulting anion was allowed to react with aldehydes. The crude 1-methoxy- 1- (trimethylsily1)- 1-alkenes **(1)** thus obtained were readily hydrolyzed⁸ with dilute hydrochloric

ences cited therein. See also ref **2.** (8) Hydrolysis of **1-methoxy-1-(trimethylsily1)ethylene** has been reported: Soderquist, J. A. *Org. Synth.* **1989,** *68,* **25-31.**

(5) Eaton, P. E., private communication.

⁽¹⁾ For example, Bock, H.; Alt, H.; Seidl, H. *J.* Am. *Chem.* **SOC. 1969, 91,355-361.**

⁽²⁾ For example, Ricci, A,; Degl'Innocenti, A. *Synthesis* **1989,647-660** and references cited therein.

⁽³⁾ Nakada, M.; Urano, Y.; Kobayashi, S.; **Ohno,** M. *J. Am. Chem. SOC.* **1988,110,4826-4827.**

⁽⁴⁾ (a) Soderquist, J. A.; Anderson, C. L. *Tetrahedron Lett.* **1988,29,** (b) Soderquist, J. A.; Anderson, C. L. *Ibid.* **1988, 29, 2777-2778. 2425-2428.**

⁽⁵⁾ Yoshida, J.; Matsunaga, **S.; Isoe,** S. *Tetrahedron Lett.* **1989, 30, 5293-5296.**

⁽⁶⁾ For example, Brook, A. G. *Acc. Chem. Res.* **1974, 7, 77-84.**

⁽⁷⁾ For example, hydrolysis of silyl-substituted dithianes: Brook, A. G.; Duff, J. M.; Jones, P. F.; Davis, N. R. *J.* Am. *Chem.* SOC. **1967,89,431.** (b) Corey, E. J.; Seebach, D.; Freedman, R. *Ibid.* **1967, 89, 434-436.** Oxidation of **1,l-bis(trimethylsily1)alkan-1-01s:** (c) Kuwajima, I.; Sato, T.; Minami, N.; Abe, **T.** *Tetrahedron Lett.* **1976,1591-1594.** (d) Palladiumcatalyzed reaction of acid halides with disilanes: Yamamoto, K.; Suzuki, S.; Tsuji, J. *Ibid.* **1980,21,1653-1656.** Hydroboration of silyl-substituted acetylenes: (e) Miller, J. **A.;** Zweifel, C. J. Am. *Chem. SOC.* **1981, 103,** 6217–6219. Reaction of silyl-substituted alkyllithium with carbon mo-
nooxide: (f) Murai, S.; Ryu, I.; Iriguchi, J.; Sonoda, N. *Ibid.* 1984, 106,
2440–2442. Reaction of organic halides with the anion of methoxy(phe-
nylth of a-silyl alcohols: (h) Danheiser, R. L.; Fink, D. M.; **Okano,** K.; Tsai, Y.-M.; Szczepanski, S. W. J. *Org. Chem.* **1986,50, 5393-5396** and refer-

Table I. Synthesis of Acylsilanes from Aldehydes

aldehyde	acylsilane	% yield ^a
$CH3(CH2)8CHO$	$CH3(CH2)9COSi(CH3)3$	75
PhCH ₂ CHO	$PhCH_2CH_2COSi(CH_3)_3$	51
PhCHO	$PhCH2COSi(CH3)3$	67
c -C _a H ₁ , CHO	c -C ₆ H ₁₁ CH ₂ COSi(CH ₃) ₃	92
$C_{10}H_{21}CH=CH(C-$ $H2$, CHO	$C_{10}H_{21}CH=CH(CH_2)_3COSi(CH_3)_3$	87

^a Isolated yields.

acid in H,O/THF to give the corresponding acylsilanes *(eq* 1). This method is experimentally quite simple to perform, and the yields range from 51 to 92% (Table I).

$$
R \begin{picture}(100,10) \put(0,0){\line(1,0){16.5}} \put(10,0){\line(1,0){16.5}} \put(10,0
$$

Although the enol ether intermediates are sensitive to acid, they can be isolated by silica gel flash chromatography using eluate containing a small amount of triethylamine and can be allowed to react with various electrophiles? For example, the treatment of 3 with N-bromosuccinimide in the presence of a small amount of water in **THF** afforded the $(\alpha$ -bromoacyl)silane $(4a)$ in 71% yield (eq 2).¹⁰ The (α -chloroacyl)silane **(4b)** was also obtained using *N*-chlorosuccinimide under similar conditions. The reaction with *N*-iodosuccinimide, however, did not afford the desired (α -iodoacyl)silane under using N-chlorosuccinimide under similar conditions. The reaction with N-iodosuccinimide, however, did not afford the desired $(\alpha$ -iodoacyl)silane under similar conditions.

$$
n-CgH17
$$

\nSiMe₃
\nSiMe₃
\n
$$
n-CgH17
$$

\nSiMe₃ (eq. 2)
\n
$$
n-CgH17
$$

\nSiMe₃ (eq. 2)
\n
$$
4a, X = Br
$$

\n
$$
4b, X = Cl
$$

Phenylselenenyl chloride also serves as an electrophile. The reaction of 3 with phenylselenenyl chloride in the presence of triethylamine and methanol in dichloromethane gave **(a-(phenylse1eno)acyl)silane (5)** (72% yield). Oxidation with sodium periodate in methanol afforded the a,B-unsaturated acylsilane **(6)** in quantitative yield (eq 3). Various reactions of α,β -unsaturated acylsilanes have been reported in the literature, 11 and the present procedure provides convenient access to these useful compounds.

⁽⁹⁾ Reactions of 1-((trimethylsilyl)oxy)-1-(trimethylsilyl)alkenes with various electrophiles have been reported: (a) Sato, T.; Arai, M.; Kuwa-
jima, I. J. Am. Chem. Soc. 1977, 99, 5827–5828. (b) Sato, T.; Abe, T.;
Kuwajim

Experimental Section

General Comments, Glass-support precoated (Merk Silica gel **60 F252,0.25** mm) plates were employed for analytical TLC. Vapor phase chromatography (WC) was performed on a **2** m **X 3** mm column packed with Silicone OV-1 **(2%)** on Chromosorb WAW DMCS. lH NMR spectra were determined at **90** MHz. Mass spectra were obtained at an ionization potential of **70** eV.

Methoxybis(trimethylsilyl)methane.'2 Methoxy(trimethylsi1yl)methane (Aldrich) was deprotonated according to Magnus's procedure.¹³ To a solution of methoxy(trimethylsily1)methane **(6.00** g, **49.7** mmol) in **50** mL of THF was added **sec-butyllithium/cyclohexane (1.3** M, **65** mL, **84.5** mmol) at **-78** °C. The mixture was warmed to −25 °C and stirred at this temperature for 40 min. The mixture was recooled to -78 °C, and chlorotrimethylsilane **(9.84** g, **90.6** mmol) was added. The mixture was warmed to room temperature and stirred at this temperature for **1** h. Brine was added, and the organic materials were extracted with ether and dried (MgSO₄). After evaporation of the solvent the residue was purified via distillation (65-70 °C/15 mmHg) to obtain the title compound $(9.13 \text{ g}, 96 \text{ %})$: VPC t_R 1.75 min (100–230 °C, 20 °C/min); ¹H NMR (CDCl₃) *δ* 0.06 (s, 18 H), **2.46 (8, 1** H), **3.32 (s,3** H); IR (neat) **2950 (s), 2800** (m), **1443** (m), **1245** (s), **1085 (s), 1025** (m), *860* (s), *840* **(e), 752** (m), **690** (m) cm-'; MS m/e (%) 190 (11), 175 (26), 147 (100), 133 (14), 102 (9), 89 **(19), 73 (30), 59 (10).** Anal. Calcd for C5H140Si: C, **50.46;** HI **11.64.** Found: C, **50.68;** H, **11.73.**

General Procedure for the Synthesis of Acylsilanes from Aldehydes. To a solution of **methoxybis(trimethylsily1)methane** (5 mmol) in 10 mL of THF was added n-butyllithium/hexane (5 mmol) at -78 °C. The mixture was warmed up to 0 °C and stirred at this temperature for **30** min. The resulting yellow solution was recooled to -78 °C, and the aldehyde (5 mmol) was added. The mixture **was** stirred at this temperature for **1** h and warmed up to room temperature over **0.5-2** h. Brine was added, and the organic materials were extracted with ether and dried (MgS04). The solvent was removed under reduced pressure, and the residue was dissolved in 8 mL of THF. Hydrochloric acid **(l%, 1** mL) was added, and the mixture was stirred at room temperature overnight. The mixture was partitioned between saturated aqueous $Na₂CO₃$ and ether. The organic layer was separated and dried (MgS04). After evaporation of the solvent the crude product was purified via flash chromatography on silica gel.

Undecanoyltrimethylsilane: 1.13 g **(75%);** TLC *R,* **0.67** (hexane/ethyl acetate, 9:1); VPC t_R 5.9 min (100-230 °C, 20 $^{\circ}$ C/min); ¹H NMR (CDCl₃) δ 0.20 (s, 9 H), 0.70–1.00 (m, 3 H), **1.00-1.60** (m, 7 H), **2.53** (t, *J* = **7.5** Hz, **2** H); IR (neat) **2940** (s), **2860 (s), 1645 (s), 1465** (m), **1255** (s), **845 (8)** cm-'; MS *m/e* (%) **242 (2.3), 237 (3.2), 199 (1.9), 185 (1.71, 171 (2.2), 151 (2.1), 129 (26), 101 (13), 73 (100);** HRMS calcd for C14Ha0Si **242.2065,** found **242.2052.**

(3-Phenylpropanoy1)trimethylsilane: 0.123 g **(51%);** TLC *R,* **0.38** (hexane/ethyl acetate, **191);** VPC *tR* **5.9** min **(100-230** "c, **20** "C/min); 'H NMR (CDC13) **6 0.16 (s,9** H), **2.65-2.85** (m, **4** H), **6.93-7.25** (m, 5 H); IR (neat) **2950** (m), **1640** (s), **1600** (w), **1500** (m), **1450** (w), **1250** (s), **840 (8)** cm-'; MS *m/e* (%) **205 (lo), 191 (4.2), 163 (2.0), 135 (4.4), 117 (2.9), 101 (2.7), 91 (2.5), 75 (31), 73** (100); **HRMS** C₁₂H₁₈OSi 206.1127, found 206.1115.

(Phenylacetyl)trimethylsilane: 0.154 g (67%); TLC R_f 0.42 (hexane/ethyl acetate, **19:l);** VPC *t~* **4.6** min **(100-230** "C, **20** [•]C/min); ¹H NMR (CDCl₃) *δ* 0.11 (s, 9 H), 3.83 (s, 2 H), 6.95–7.30 **(m,** 5 H); IR (neat) **2975 (s), 1700** (w), **1640 (s), 1600 (w), 1500** (m), **1450** (w), **1250 (s), 840 (a), 750** (m), **700 (8)** cm-'; MS *m/e (70)* **192 (O.l), 177 (0.3), 164 (93), 149 (56), 121 (47), 101 (loo),** 91 (11), 73 (100), 63 (8), 53 (23); **HRMS** calcd for C₁₁H₁₆OSi **192.0970,** found **192.0960.**

(Cyclohexylacety1)trimethylsilane: 0.437 g **(92%);** TLC *R,* **0.80** (hexane/ethyl acetate, **19:l);** VPC *t~* **4.7** min **(100-230** OC, **20** OC/min); 'H NMR (CDC13) *b* **0.19 (8, 9** H), **0.60-2.00** (m, **11** H), **2.46** (d, *J* = **6.2** Hz, **1** H); IR (neat) **2900 (s), 2850** (s), **1640 (s), 1450** (m), **1250 (s),** 850 (s), **750** (w) cm-'; **MS** *m/e* (%) **198 (17), 183 (19), 155 (38), 116 (29), 108, (481, 101 (68), 93 (16), 79**

⁽¹⁰⁾ Synthesis of $(\alpha$ -haloacyl)silanes: Page, P. C. B.; Rosenthal, S. *Tetrahedron Lett.* **1986,27,5421-5422** and references cited therein. See also: Nowick, J. **S.;** Danheiser, R. L. *Tetrahedron* **1988,444113-4134** and ref **9b.**

⁽¹¹⁾ Synthesis and reactions of α,β -unsaturated acylsilanes: Nowick, J. S.; Danheiser, R. L. *J. Org. Chem.* **1989,542798-2802** and references cited therein.

⁽¹²⁾ Yoshida, **J.;** Matsunaga, S.; **Isoe,** *S. Tetrahedron Lett.* **1989,30, 219-222.**

⁽¹³⁾ Magnus, P.; Roy, G. *Organometallics* **1982,** *1,* **553-559.**

(22), 75 (100), 73 (100), 55 (18); HRMS calcd for $C_{11}H_{22}OSi$ 198.1440, found 198.1458.

(E)-(5-Hexadecenoyl)trimethylsilane: 1.05 g (87%); TLC R_t 0.88 (hexane/ethyl acetate, 19:1); VPC t_R 13.5 min (100-230) ^oC, 20 ^oC/min); ¹H NMR (CDCl₃) δ 0.18 (s, 9 H), 0.7-1.0 (m, 3 H), 1.10-2.25 (m, 22 H), 2.57 (t, J ⁼7.0 Hz, 2 H), 5.3 (m, 2 H); IR (neat) 2900 (s), 2850 (m), 1640 (m), 1460 (w), 1250 (m), 840 (s) cm-'; MS m/e (%) 310 (4.2), 183 (38), 169 (loo), 101 (14), 73 (72); HRMS calcd for $C_{19}H_{38}OSi$ 310.2692, found 310.2719.

1-Methoxy-1-(trimethylsily1)-1-undecene (3). To a solution of **methoxybis(trimethylsily1)methane** (1.762 g, 9.25 mmol) in 20 mL of THF was added *n*-butyllithium/hexane $(6.3 \text{ mL}, 10.1)$ mmol) at -78 °C. The mixture was warmed up to 0 °C and stirred at this temperature for 0.5 h. After being recooled to -78 °C, decanal (1.569 g, 10.04 mmol) was added dropwise. The mixture was stirred at -78 °C for 0.5 h and warmed to room temperature. Aqueous saturated NaHCO, was added, and the organic materials were extracted with ether and dried (MgSO₄). After evaporation of the solvent flash chromatography (hexane/ethyl acetate, 191, containing 1% triethylamine) of the residue yielded the title compound (1.569 g, 84% yield). 'H NMR spectral analysis indicated that essentially one isomer was obtained with respect to the geometry of the carbon-carbon double bond, although it was difficult to determine whether it is E or Z : TLC R_t 0.68 (hexane/ethyl acetate, 19:1); VPC $t_{\rm R}$ 7.9 min (100–230 °C, 20 °C/min); ¹H NMR (CDCl₃) δ 0.17 (s, 9 H), 0.7-1.0 (m, 3 H), 1.1-1.5 (m, 14 H), 1.85-2.2 (m, 2 H), 3.45 (s, 3 H), 5.15 (t, *J* = 7.9 Hz, 1 **H);** IR (neat) 2930 (s), 2850 (m), 1610 (m), 1460 (m), 1250 (s), 1190 (m), 1110 **(s),** 840 (s), 760 (m) cm-'; MS m/e (%) 257 (1.2), 256 **(5),** 241 (45), 183 (22), 143 (29), 129 (161, 109 (12), 95 (45), 89 (100); HRMS calcd for $C_{15}H_{32}OSi$ 256.2222, found 256.2194.

(2-Bromoundecanoyl)trimethylsilane (4a). To a solution of N-bromosuccinimide (0.098 g, 0.55 mmol) in THF (1 mL) was added water $(0.020 \text{ mL}, 1.1 \text{ mmol})$. Then enol ether 3 $(0.149 \text{ g},$ 0.57 mmol) was added at –78 °C. The mixture was stirred at this temperature for 10 min and at 0 $^{\circ}$ C for 20 min. To the resulting yellow solution was added brine. The organic materials were extracted with ether and dried $(MgSO₄)$. After evaporation of the solvent the residue was purified via flash chromatography (hexane/ethyl acetate, 391) to obtain the title compound (0.126 g, 71%): $\text{TLC } R_f$ 0.33 (hexane/ethyl acetate, 39:1); VPC $t_{\rm R}$ 7.9 min (100–230 °C, 20 °C/min); ¹H NMR (CDCl₃) δ 0.29 (s, 9 H), $0.7-1.0$ (m, 3 H), $1.1-2.1$ (m, 16 H), 4.44 (dd, $J = 6.4$ and 7.7 Hz, 1 H); IR (neat) 2950 (s), 2900 (s), 2850 (s), 1640 (m), 1460 (m), 1250 (m), 850 (s), 760 (m) cm-'; MS m/e (%) 305 **(5),** 271 (2), 241 (41), 225 (5), 207 (8), 193 (19), 183 (ll), 167 (30), 139 (7), 129 (2), 101 (27), 73 (100); HRMS calcd for $C_{13}H_{26}BrOSi$ 305.0937, found 305.0955; calcd for $C_{13}H_{26}$ *BrOSi 307.0916, found 307.0929.

(2-Chloroundecanoyl)trimethylsilane (4b). To a solution of N-chlorosuccinimide (0.141 g, 1.06 mmol) in 5 mL of THF was added water (0.030 ml, 1.66 mmol). Then 3 (0.270 g, 1.04 mmol) was added at $0 °C$, and the mixture was stirred at this temperature for 0.5 h and at room temperatue for 5 h. Brine was added, and the organic materials were extracted with ether and dried (Mg-SO,). After evaporation of the solvent the residue was purified via flash chromatography (hexane/ethyl acetate, 39:l) to obtain the title compound (0.16 g, 56%): TLC R_f 0.44 (hexane/ethyl acetate, 19:1); VPC $t_{\rm R}$ 7.1 min (100–230 °C, 20 °C/min); ¹H NMR $(CDC1₃)$ δ 0.28 (s, 9 H), 0.7-1.0 (m, 3 H), 1.1-2.0 (m, 16 H), 4.23 (dd, *J* = 5.5 and 7.8 Hz, 1 H); IR (neat) 2925 (s), 2850 (s), 1645 (s), 1470 (m), 1250 (s), 850 (s), 760 (m) cm-'; MS m/e (%) 276 (0.5), 261 (l.O), 241 (1,6), 149 **(7),** 140 (43), 101 (loo), 93 (76), 74 (100), 73 (100); HRMS calcd for $C_{14}H_{29}OSi*Cl$ 278.1647, found 278.1658; calcd for $C_{14}H_{29}OSiCl: 276.1676$, found 276.1660.

(2-(Phenylseleno)undecanoyl)trimethylsilane (5). To a solution of enol ether $3(0.506 \text{ g}, 1.9 \text{ mmol})$ in $6 \text{ mL of } CH_2Cl_2$. were added methanol (0.089 mL, 2.2 mmol) and triethylamine $(0.31 \text{ mL}, 2.2 \text{ mmol})$. The mixture was cooled to -78 °C, and a solution of phenylselenenyl chloride (0.408 g, 2.1 mmol) in 4 mL of CH_2Cl_2 was added dropwise. The mixture was warmed to room temperature and stirred at this temperature overnight. Water was added, and the organic materials were extracted with ether and dried **(MgSO,).** After evaporation of the solvent the residue was purified via flash chromatography (hexane to hexane/ethyl acetate, 9:1) to obtain the title compound $(0.545 \text{ g}, 72\%)$. TLC R_f 0.48 (hexane/ethyl acetate, 19:1); VPC t_R 15.8 min (100-240) **"C,** 10 "C/min); 'H NMR (CDCl,) 6 0.20 **(s,** 9 H), 0.7-1.0 (m, 3 H), 1.1-1.7 (m, 16 H), 3.90 (t, *J* = 6.8 Hz, 1 H), 7.23 (m, 5 H); IR (neat) 2920 (s), 2850 **(e),** 1735 (w), 1635 **(s),** 1580 (w), 1460 (m), 1440 (m), 1250 (s), 850 **(e),** 740 **(s),** 690 (m) cm-'; MS m/e (%) 398 (4.2), 383 (1.6), 321 (1.4), 310 (3.2), 285 (14), 241 (97), 230 (a), 129 (100), 103 (24), 95 (66); HRMS calcd for C₂₀H₃₄OSiSe 398.1544, found 398.1550.

(E)-(2-Undecenoyl)trimethylsilane (6). To **a** solution of acylsilane **5** (0.335 g, 0.84 mmol) in 5 mL of methanol was added NaIO_4 (0.201 g, 0.94 mmol) at room temperature, and the mixture was stirred at this temperature for 2 h. Aqueous saturated NH,Cl was added, and the organic materials were extracted with ether and dried $(MgSO₄)$. After evaporation of the solvent the residue was purified via flash chromatography (hexane to hexane/ethyl acetate, $9:1$) to obtain the title compound $(0.205 g,$ quantitative): TLC R_f 0.40 (hexane/ethyl acetate, 19:1); VPC t_R 6.7 min (100-230) °C, 20[']°C/min); ¹H NMR (CDCl₃) δ 0.25 (s, 9 H), 0.7–1.0 (m, 3 **H),** 1.1-1.65 (m, 12 H), 2.05-2.4 (m, 2 H), 6.20 (dt, *J* = 16.3 and 1.3 Hz, 1 H), 6.59-6.93 (m, 1 H); IR (neat) 2920 (s), 2850 (m), 1580 (m), 1250 (m), 1195 (m), 980 (w), 845 *(8)* cm-'; MS m/e (%) 240 (2), 225 (4), 197 **(4),** 169 **(5),** 155 (26), 142 (16), 127 (E), 73 (100); HRMS calcd for $C_{14}H_{28}OSi$ 240.1910, found 240.1919.

Acknowledgment. We thank the Ministry of Education, Science and Culture, Japan, for a Grant-in-Aid for Scientific Research (No.63540408).

Supplementary Material Available: 'H NMR spectra of **methoxybis(trimethylsilyl)methane,** 1-methoxy-1-(trimethylsily1)-1-undecene, and the acylsilanes synthesized in this study (11 pages). Ordering information is given on any current masthead page.

3-Hydroxy-4-met hylt hiazole-2 (3H) -t hione Carbamates (TTOC Carbamates). Useful Precursors for Monoalkylaminium Cation Radicals

Martin Newcomb* and Karl A. Weber

Department *of* Chemistry, Texas A&M University, College Station, Texas *77843*

Received June *13,* 1990

Our group has demonstrated that Barton's powerful methodology for the production of carbon-centered radicals' from PTOC esters **(1)2** can be extended to dialkyl nitrogen-centered radicals. 3 Either neutral dialkylaminyl radicals or protonated dialkylaminium cation radicals *can* be produced from PTOC carbamates **2.2** The more reactive dialkylaminium cation radicals are synthetically useful, and good yields of products resulting from intramolecular 5-exo additions to unactivated double bonds^{3b-d} or from intermolecular additions to electron-rich olefins^{3e} can be realized under mild reaction conditions. We now report that nitrogen-centered radicals also can be produced from the title precursors, TTOC carbamates (3).⁴ Dialkylaminium cation radicals are available from TTOC carbamates, but, more importantly, these precursors can be used for the

⁽¹⁾ Barton, D. H. R.; Crich, D.; Motherwell, W. B. *Tetrahedron* **1985,** *41,* **3901.**

⁽²⁾ PTOC is the acronym for **2-thioxopyridinyloxycarbonyl.** PTOC esters and PTOC carbamates are actually mixed anhydrides of the thiohydroxamic acid with a carboxylic acid and a carbamic acid, respectively. **(3)** (a) Newcomb, M.; Deeb, T. M. *J. Am. Chem.* SOC. **1987,109,3163.**

⁽b) Newcomb, M.; Deeb, T. M.; Marquardt, D. J. *Tetrahedron* 1990, 46, 2317. (c) Newcomb, M.; Marquardt, D. J.; Deeb, T. M. *Ibid.* 1990, 46, 2329. (d) Newcomb, M.; Marquardt, D. J.; Kumar, M. U. *Ibid.* 1990, 46, 2329. (d

⁽⁴⁾ TTOC for **thioxothiazolyloxycarrbonyl.**